Importance of human right inferior frontoparietal network connected by inferior branch of superior longitudinal fasciculus tract in corporeal awareness of kinesthetic illusory movement
نویسندگان
چکیده
It is generally believed that the human right cerebral hemisphere plays a dominant role in corporeal awareness, which is highly associated with conscious experience of the physical self. Prompted by our previous findings, we examined whether the right frontoparietal activations often observed when people experience kinesthetic illusory limb movement are supported by a large-scale brain network connected by a specific branch of the superior longitudinal fasciculus fiber tracts (SLF I, II, and III). We scanned brain activity with functional magnetic resonance imaging (MRI) while nineteen blindfolded healthy volunteers experienced illusory movement of the right stationary hand elicited by tendon vibration, which was replicated after the scanning. We also scanned brain activity when they executed and imagined right hand movement, and identified the active brain regions during illusion, execution, and imagery in relation to the SLF fiber tracts. We found that illusion predominantly activated the right inferior frontoparietal regions connected by SLF III, which were not substantially recruited during execution and imagery. Among these regions, activities in the right inferior parietal cortices and inferior frontal cortices showed right-side dominance and correlated well with the amount of illusion (kinesthetic illusory awareness) experienced by the participants. The results illustrated the predominant involvement of the right inferior frontoparietal network connected by SLF III when people recognize postural changes of their limb. We assume that the network bears a series of functions, specifically, monitoring the current status of the musculoskeletal system, and building-up and updating our postural model (body schema), which could be a basis for the conscious experience of the physical self.
منابع مشابه
Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor control and corporeal awareness.
The human brain can generate a continuously changing postural model of our body. Somatic (proprioceptive) signals from skeletal muscles and joints contribute to the formation of the body representation. Recent neuroimaging studies of proprioceptive bodily illusions have elucidated the importance of three brain systems (motor network, specialized parietal systems, right inferior fronto-parietal ...
متن کاملSelf-face recognition shares brain regions active during proprioceptive illusion in the right inferior fronto-parietal superior longitudinal fasciculus III network
Proprioception is somatic sensation that allows us to sense and recognize position, posture, and their changes in our body parts. It pertains directly to oneself and may contribute to bodily awareness. Likewise, one's face is a symbol of oneself, so that visual self-face recognition directly contributes to the awareness of self as distinct from others. Recently, we showed that right-hemispheric...
متن کاملVirtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans
Many of the behavioral capacities that distinguish humans from other primates rely on fronto-parietal circuits. The superior longitudinal fasciculus (SLF) is the primary white matter tract connecting lateral frontal with lateral parietal regions; it is distinct from the arcuate fasciculus, which interconnects the frontal and temporal lobes. Here we report a direct, quantitative comparison of SL...
متن کاملBrain networks of spatial awareness: evidence from diffusion tensor imaging tractography.
Left unilateral neglect, a dramatic condition which impairs awareness of left-sided events, has been classically reported after right hemisphere cortical lesions involving the inferior parietal region. More recently, the involvement of long range white matter tracts has been highlighted, consistent with the idea that awareness of events occurring in space depends on the coordinated activity of ...
متن کاملRevealing the topological architecture of human cortical anatomical network by DTI tractography
(orbital part) and right lingual gyrus; 2) the body of corpus callosum connecting the left and right paracentral lobules; 3) superior longitudinal fasciculus connecting right precentral gyrus and right inferior parietal gyrus; 4) a U-shape tract in right frontal lobe connecting right inferior frontal gyrus (opercular part) and right precentral gyrus. (c) Anatomical connection matrix of human co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cortex
دوره 78 شماره
صفحات -
تاریخ انتشار 2016